

Test Certificate

A sample of the following product received on January 25, 2006 and tested on January 25, January 26 and February 2, 2006 complied with the requirements of the following standard(s), given the measurement uncertainties as detailed in Elliott report R72140:

• EN 300 328 V1.7.1 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive"

Horizon Hobby, Inc. Model(s) DX7, DX6, DX5

Mark E. Hill Staff Engineer

Horizon Hobby, Inc.

Printed Name

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this certificate. This certificate shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

Elliott Laboratories www.elliottlabs.com 684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-7800 Phone 408-245-3499 Fax

Elliott Laboratories www.elliottlabs.com 684 West Maude Avenue Sunnyvale, CA 94085-3518

408-245-7800 Phone 408-245-3499 Fax

Electromagnetic Compatibility Test Report

EN 300 328 V1.7.1 ElectroMagnetic Compatibility and Radio spectrum Matters (ERM); Wideband Transmission Systems; Data transmission equipment operating in the 2,4 GHz ISM band and using spread spectrum modulation techniques;

> Horizon Hobby, Inc. Model: DX7, DX6, DX5

MANUFACTURER: Horizon Hobby, Inc. 4105 Fieldstone Road Champaign, IL 61822

> TEST SITE: Elliott Laboratories 684 W. Maude Ave Sunnyvale, CA 94086

> > June 26, 2008

REPORT DATE:

FINAL TEST DATE:

AUTHORIZED SIGNATORY:

January 25, January 26 and February 2, 2006

Mark E. Hill Staff Engineer

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R72140 Rev 1 Page 1 of 11

REVISION HISTORY

Rev #	Date	Comments	Modified By
1	July 9, 2008	Initial Release	Gary Izard

TABLE OF CONTENTS

COVER PAGE	.1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	5
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARD	5
PERFORMANCE ASSESSMENT	6
TEST RESULTS	6
EN 300 328 V1.7.1 – FREQUENCY HOPPING MODULATION	6
EXTREME CONDITIONS	6
MEASUREMENT UNCERTAINTIES	6
EQUIPMENT UNDER TEST (EUT) DETAILS	.7
GENERAL	7
OTHER EUT DETAILS	7
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
EMISSIONS TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	8
EMISSIONS MEASUREMENT INSTRUMENTATION	8
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
FILTERS/ATTENUATORS	
ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE	9
RADIO STANDARD TEST PROCEDURES	
OUTPUT POWER	10
CONDUCTED SPURIOUS EMISSIONS	
RADIATED SPURIOUS EMISSIONS	
SAMPLE CALCULATIONS	11
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	11
SAMPLE CALCULATIONS - RADIATED SPURIOUS EMISSIONS	11

TABLE OF CONTENTS (continued)

APPENDIX A: TEST EQUIPMENT CALIBRATION DATA	.1
APPENDIX B: TEST DATA LOG SHEETS	.2
APPENDIX C: RADIATED EMISSIONS PHOTOGRAPHS	.3
APPENDIX D: CONDUCTED EMISSIONS PHOTOGRAPHS	.5

SCOPE

The European Committee for Electrotechnical Standardization (CENELEC) and the European Telecommunications Standards Institute (ETSI) publish standards regarding ElectroMagnetic Compatibility and Radio spectrum Matters for radio-communications devices. Tests have been performed on the Horizon Hobby, Inc. model DX6 in accordance with these standards.

Electromagnetic compatibility test data has been taken pursuant to the relevant requirements of the following harmonized EN standard(s) covering essential requirements under article 3.2 of the R&TTE Directive:

• EN 300 328 V1.7.1 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband Transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using spread spectrum modulation techniques"

Tests were performed in accordance with these standards together with the current published versions of the basic standards referenced therein as outlined in Elliott Laboratories test procedures. The test data has been provided as an appendix to this report for reference.

The test results recorded herein are based on a single type test of the Horizon Hobby, Inc. model DX6 and therefore apply only to the tested sample. The sample was selected and prepared by Paul Beard of Horizon Hobby, Inc.

Testing on the DX6 was considered representative of testing on the DX7 and DX5 versions of the product. The hardware is identical for all three systems. Differences in the models is achieved thru software changes.

OBJECTIVE

The objective of the manufacturer is to comply with the harmonized standards identified in the previous section. In the case of most equipment, this document requires testing to other EN specifications.

In order to demonstrate compliance, the manufacturer or a contracted laboratory makes measurements and takes the necessary steps to ensure that the equipment complies with the appropriate technical standards.

STATEMENT OF COMPLIANCE

The tested sample of Horizon Hobby, Inc. model DX6 complied with the relevant requirements of:

EN 300 328 V1.7.1

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARD

No deviations were made from the test methods and requirements detailed in the standards listed in this report.

PERFORMANCE ASSESSMENT

The Horizon Hobby, Inc. model DX6 primary function is to remotely control model aircraft and helicopters. All other characteristics of the product tested are detailed in the remainder of this report.

TEST RESULTS

Section	Description	Measured	Limit	Result
4.3.1.2	Average Effective Radiated Power (over normal and extreme conditions)	19.1 dBm	100mw (20dBm)	Complies
4.3.3	Frequency Range (over normal and extreme conditions)	2400.8 - 2478.75 MHz	2400 MHz – 2483.5 MHz	Complies
4.3.4	Number of hopping channels	40	>15 channels	Complies
4.3.4	Channel separation	2 MHz	The greater of >1 MHz or >20dB bandwidth	Complies
4.3.4	Maximum time of occupancy	0.43 ms	0.4 s	Complies
4.3.5	Medium Access Protocol	See operational description		Complies
4.3.6	Transmit Mode Spurious Emissions (radiated)	45.3dBµV/m @ 4959.6MHz (-20.0dB)	EN 300 328 v1.4.1 Tables 2 and 3	Complies
4.3.7	Stand-By/Receive Mode Spurious Emissions (radiated)	33.7dBµV/m @ 798.828MHz (- 12.3dB)	EN 300 328 v1.4.1 Tables 4 and 5	Complies

EXTREME CONDITIONS

Voltage extremes used during testing were for equipment intended to operate from a mercury or nickel-cadmium type of battery, 0.9 times and 1.15 times the nominal voltage (9.6Vdc) of the battery.

Temperature extremes used during testing were those for unrestricted use, -20° C to $+55^{\circ}$ C.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7000 MHz	1.7 x 10 ⁻⁷
RF power, conducted	dBm	25 to 7000 MHz	$\pm 0.52 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Radiated emission of transmitter	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission of receiver	dBm	25 to 26500 MHz	± 2.5 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Horizon Hobby, Inc. model DX6 is a 2.4GHz Spread Spectrum transceiver module which is designed for model aircraft control and telemetry. The RF Module inside is named as X1TXN. Normally, the EUT would be hand-held during operation. The EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the RF module is 9.6V DC 300mA.

The sample was received on January 25, 2006 and tested on January 25, January 26 and February 2, 2006. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number
Horizon Hobby	DX6 w/X1TXN FHSS	Remote Control	-
	radio module		

OTHER EUT DETAILS

The EUT antenna is a 2dBi Folded dipole.

The RF Module does not have an enclosure as it is designed to be installed within the enclosure of a host device.

The DX6 enclosure is primarily constructed of fabricated plastic. It measures approximately 20 cm wide by 35 cm deep by 10 cm high.

ENCLOSURE

The DX6 enclosure is primarily constructed of fabricated plastic. It measures approximately 20 cm wide by 35 cm deep by 10 cm high.

MODIFICATIONS

No modifications were made to the EUT during testing.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for testing:

Manufacturer	Model	Description	Serial Number	FCC ID
JR	XP9303	9# RC Unit	1953706	N/A
SPEKTRUM	SPM7101	AC-DC Adapter	-	N/A

No equipment was used as remote support equipment for testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

		Cable(s)			
Port	Connected To	Description	Shielded or Unshielded	Length(m)	
None	-	-	-	-	

EUT OPERATION

The X1 TXM module was configured to continuously transmit on a single channel (top, center or bottom) for transmit-mode tests. For receive mode tests the device was configured to continuously receive on the center channel.

EMISSIONS TEST SITE

GENERAL INFORMATION

Final test measurements were taken on January 25, January 26 and February 2, 2006 at the Elliott Laboratories Test Site(s) listed below. The test sites contain separate areas for radiated and conducted emissions testing. The sites conform to the requirements of CISPR 16-1:1999. They are registered with the VCCI and are on file with the FCC and Industry Canada. Ambient levels are at least 6 dB below the specification limits with the exception of predictable local TV, radio, and mobile communications traffic. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

Site	VCCI Registration #	Location
SVOATS #1	R458	684 West Maude Avenue,
SVOATS #2	R709	Sunnyvale CA 94086-3518

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer. When required an attenuator or dc block is placed between the EUT and the spectrum analyzer.

RADIATED EMISSIONS CONSIDERATIONS

CISPR has determined that radiated measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an Open Area Test Site or anechoic chamber, as defined in CISPR 16-1 and Annex A of EN 300 328 / EN 301 893 / EN 300 440-1. The test site is maintained free of conductive objects within the CISPR defined elliptical area.

EMISSIONS MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

INSTRUMENT CONTROL COMPUTER

Software control is used to convert the receiver measurements to the field strength at an antenna, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer runs automated data collection programs that control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 25 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

The test height above ground for non-body worn devices shall be 150 centimeters. Floor mounted equipment will be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

RADIO STANDARD TEST PROCEDURES

OUTPUT POWER

Output power is measured using an average sensor head. If the device is operating with a duty cycle during the measurement the measurement time is set to exceed the on/off duty cycle and the measured value is then corrected by adding a factor of 10 log(1/duty cycle) to the measured value.

Peak power measurements as required by EN 300 328 are measured using a diode detector as detailed in EN 300 328 section 5.7.2.2.

Power density is initially measured as a peak bandwidth (RBW=VBW=1MHz). If the power density is within 3dB of the limit it is re-measured via the IF output of the spectrum analyzer using an average sensor.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

FREQUENCY RANGE (EN 300 328, 2.4 GHz Band)

Frequency range is measured in accordance with EN 300 328 section 5.7.4.. Typically a bandwidth of 100kHz is used and the lower and upper frequencies at which the transmitted signal exceeds the spurious emission limit, adjusted for the measurement bandwidth, define the frequency range.

CONDUCTED SPURIOUS EMISSIONS

Conducted emissions are measured at the output of the device using a RF cable and attenuator if required. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

RADIATED SPURIOUS EMISSIONS

Radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration.

At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360° , the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. The limit is a field strength limit derived from the ERP limit specified in the standard(s).

All signals within 10dB of this calculated limit are re-measured on an OATS or Semianechoic chamber. The field strength is recorded and the EUT is then replaced with a substitution antenna of known gain (typically a dipole antenna or a double-ridged horn antenna). The erp of the substitution antenna is measured and used to calculate the erp of the EUT as outlined in section C3 of EN 300 328 and EN 301 893.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

 $R_r - S = M$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED SPURIOUS EMISSIONS

Receiver readings are compared directly to a converted specification limit (decibel form).

The conversion uses the effective radiated power limit specified in the standard to calculate the expected field strength in free space using the following formula:

$$E = \frac{\sqrt{30 P G}}{d}$$

where:

E = Field Strength in V/m P = Power in Watts G = Gain of antenna in numeric gain¹D = distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated as follows:

$$M = R_c - L_s$$

where:

When substitution measurements are required (all signals with less than 6dB of margin relative the field strength limit) the margin of the emissions relative to the effective radiated power limit is calculated from:

$$P_S - S = M$$

where:

Ps	=	effective radiated power determined from antenna
		substitution (dBm)

- S = Specification Limit in dBm
- M = Margin to Specification in +/- dB

¹ Although the gain relative to a dipole should be used for limits expressed as an erp, the isotropic gain is used as this produces a more conservative limit.

APPENDIX A: Test Equipment Calibration Data

1 Page

Engineer: Mehran Birgani				
Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1321	30-Mar-07
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	23-May-06
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 40 GHz, Fremont (SA40)	8564E (84125C)	1393	26-Oct-05
EMCO	Horn antenna, D. Ridge 1-18GHz (SA40 system antenna)30Hz sunnyvale	3115	1142	11-Jun-06
Hewlett Packard	Microwave EMI test system head (includes W1 - W4, Asset 1143 and 1144)	84125C	1145	07-Sep-06
EMCO	Horn antenna, 18-26.5 GHz (SA40 30Hz)	3160-09 (84125C)	1150	12-Sep-06
Hewlett Packard	High Pass filter, 3.5GHz	P/N 84300-80038	1157	28-Apr-06
Radiated Emissions, 23-Nov	v-05			
Engineer: Mehran Birgani				
Manufacturer	Description	Model #	Asset #	Cal Due
Narda West	High Pass Filter 4.0 GHz,	HXF370	247	16-May-06
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	26-Apr-06
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	1242	19-Oct-06
Hewlett Packard	EMC Spectrum Analyzer, 9KHz - 22GHz	8593EM	1319	28-Mar-06
Conducted Emissions - AC Engineer: Mehran Birgani Manufacturer Rohde& Schwarz Fischer Custom Comm. Rohde & Schwarz Radiated Emissions, 1000 - Engineer: Chris Byleckie Manufacturer Hewlett Packard Hewlett Packard Hewlett Packard EMCO	Description Pulse Limiter LISN, Freq. 0.9 -30 MHz,16 Amp Test Receiver, 9kHz-2750MHz 26,500 MHz, 26-Jan-06 Description Microwave Preamplifier, 1-26.5GHz High Pass filter, 3.5GHz EMC Spectrum Analyzer 9kHz - 40 GHz, Fremont (SA40) Blue Horn antenna, D. Ridge 1-18GHz (SA40 system	Model # ESH3 Z2 FCC-LISN-50/250-16-2 ESCS 30 Model # 8449B P/N 84300-80038 8564E (84125C) 3115	812 1079 1337	<u>Cal Due</u> 11-Feb-06 07-Jul-06 12-Jan-06 12-Jan-06 26-Apr-06 28-Apr-06 10-Nov-06 11-Jun-06
. 02-Feb-06	antenna)30Hz sunnyvale	3115	1142	TT-Juli-06
Engineer: Mehran Birgani Manufacturer Hewlett Packard Filtek EMCO Hewlett Packard EMCO EMCO Rohde & Schwarz	Description Microwave Preamplifier, 1-26.5GHz High Pass Filter, 1GHz Horn antenna, D. Ridge 1-18GHz (SA40 system antenna)30Hz sunnyvale EMC Spectrum Analyzer 30Hz - 40GHz, Sunnyvale (SA40) Red Biconical Antenna, 30-300 MHz Log Periodic Antenna, 0.2-2 GHz Test Receiver, 0.009-2750 MHz	Model # 8449B HP12/1000-5BA 3115 8564E (84125C) 3110B 3148 ESN	Asset # 785 957 1142 1148 1320 1321 1332	Cal Due 26-Apr-06 18-Apr-06 11-Jun-06 09-Sep-06 05-Oct-06 30-Mar-07 23-May-06

APPENDIX B: Test Data Log Sheets

ELECTROMAGNETIC COMPATABILITY

TEST LOGS

T61985 16 Pages

Elliott

EMC Test Data

A division of	of ATA		
Client:	Horizon Hobby, Inc.	Job Number:	J61984
Model:	X1TXN Spektrum DSM X1 module	Test-Log Number:	T61985
		Project Manager:	Ezther Zhu
Contact:	Paul Beard		
Emissions Spec:	EN 300 440 V1.3.1, EN 300-328 V1.7	Class:	-
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

Horizon Hobby, Inc.

Model

X1TXN Spektrum DSM X1 module

Date of Last Test: 3/12/2007

Ellic			ГлА	C Toot Data					
	of ATAS"		EIVI	C Test Data					
	: Horizon Hobby, Ind		Job Number:						
Model	: X1TXN Spektrum I	DSM X1 module	Test-Log Number:						
			Project Manager:	Ezther Zhu					
	: Paul Beard								
	EN 300 440 V1.3.1	Class:	-						
Immunity Spec	-		Environment:	-					
		EUT INFORMAT	ION						
		General Description							
Module inside is name	d as X1TXN. Norma	ansceiver module which is designed Ily, the EUT would be hand-hele ad-user environment. The elect	d during operation. The EU	T was treated as table-top					
		Equipment Under Te	est						
Manufacturer	Model	Description	Serial Number	FCC ID					
Horizon Hobby	DX7	2.4GHz SS Transceive	er PFB101005	BRWDAMTX10					
EUT Enclosure The RF Module does not have an enclosure as it is designed to be installed within the enclosure of a host device.									
The RF Module does r	not have an enclosur		ed within the enclosure of a h	nost device.					
The RF Module does r	not have an enclosur			nost device.					
The RF Module does r Mod. #	not have an enclosur Test	e as it is designed to be installe		nost device.					
Mod. # 1	Test -	e as it is designed to be installe Modification Histor	ry Modification None						

Model:			EM	C Test L)a
	Horizon Hobby, Inc.		Job Number:	J61984	
	X1TXN Spektrum DSM X1	1 module	T-Log Number:	T61985	
▲ · · · ·			Project Manager:	Ezther Zhu	
	Paul Beard				
	EN 300 440 V1.3.1, EN 30	00-328 V	Class:	-	
Immunity Spec:	-		Environment:	-	
Manufacturer	Model	cal Support Equipme Description	Serial Number	FCC ID)
JR	XP9303	9# RC Unit	1953706	N/A	
SPEKTRUM	SPM7101	AC-DC Adapter	-	N/A	
Port	Inte Connected To	rface Cabling and Po			
Port	Connected To	Description	Cable(s) Shielded or Unshield	ded Leng	ath()
None		Description			Juili
	EUT Operations s configured to continuous e tests the device was conf		annel (top, center or bottom		de

	A division of AZAS		
Client:	Horizon Hobby, Inc.	Job Number:	J61984
Madal	X1TXN Spektrum DSM X1 module	T-Log Number:	T61985
wouer.		Account Manager:	Ezther Zhu
Contact:	Paul Beard		
Spec:	EN 300 440 V1.3.1, EN 300-328 V1.7	Class:	N/A

Temperature and Voltage Extremes - EN 300 440

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 1/25/2006 Test Engineer: Mehran Birgani Test Location: Environment Chamber Config. Used: 1 Config Change: None EUT Voltage: 9.6 Vdc

General Test Configuration

The EUT's RF port was connected to the measurement instrument's RF port, via an attenuator or dc-block if necessary.

Summary of Results

Run #	Test Performed	Limit	Result	Value / Margin
1	Permitted Frequency Range of the Modulation Bandwidth (EN 300 220)	Allocated band is 2400 - 2483.5 MHz	Pass	2400.8 - 2478.75 MHz
2	Frequency stability under low voltage conditions	signal shall remain in-band / on-channel	Pass	EUT cease to operate below 7.2Vdc
2	Power under normal and extreme operating conditions	Peak / Avg	Pass	19.1 dBm
3	20dB Bandwidth	15.247(a)	Pass	1.3MHz
3	Channel Occupancy	15.247(a)	Pass	21.99mS
3	Number of Channels	15.247(a)	Pass	40

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

The following modifications were made to the EUT during testing in order to comply with the requirements of the standard: Peak power sensor was used instead of diode peak detctor measured peak.

C I								EM	IC Test Data
Client:	Horizon Hobb	y, Inc.					J	lob Number:	J61984
M. 1.1	Model: X1TXN Spektrum DSM X1 module						T-L	og Number:	T61985
Model: X1TXN Spektrum DSM X1 module						Accou	nt Manager:	Ezther Zhu	
Contact: Paul Beard Spec: EN 300 440 V1.3.1, EN 300-328 V1.7									
Spec:	EN 300 440 V	/1.3.1, EN 3	00-328 V1.7	7				Class:	N/A
Test Notes Voltage extremes: Mercury or nickel-cadmium type of battery: 0.9 times and 1.15 times the nominal voltage of the battery; Temperature extremes: Unrestricted use: -20°C to +55°C The transmitter was tested at temperature extremes of -20 and +55 degrees C and at voltage extremes based on a 9.6V operating voltage with +0%,-85% extremes as detailed in EN 300 440-1. Run# 1: Frequency range of modulation (permitted range of operating frequency) Direct measurements were taken from the EUT. The fundamental must stay within the frequency of operation. Drift of the fundamental is determined by using the -30dBm spurious emissions limit. Fl is frequency low and Fh is frequency high.									
Ciana di man									
Temp	nitored with d 20°-		20°C	25	°C	55	°C	1	
Voltage	8.2	9.6	9.6	8.2	10.0	8.2	9.6	1	
F _L (MHz)	2400.8	2400.8	2400.91			2400.91	2400.91	RBW=100k	κHz
F _H (MHz)	2478.75	2478.75	2478.75			2478.75	2478.75	RBW=100k	(Hz
FL min: FH max: Permitted ra	2400.800 2478.750 ange is 2400 -	2483.5 MH	z, device co	mplies.					

Client	A division	of AZAS"											
	Horizon Hobb	y, Inc.					Jo	ob Number:	J61984				
							T-Lo	og Number:	T61985				
Model:	X1TXN Spekt	rum DSM X	1 module					-	Ezther Zhu				
Contact:	Paul Beard							0					
	EN 300 440 \	/131 EN3	300-328 V1	7				Class:	N/A				
Opec.	2.1.000 1.10							01000.					
Qun #2∙_0	Output Power												
(un #2. 0	alpat i owei												
		Δνε		r ¹ under no	rmal and ev	vtreme oner	atina condit	ions					
	Average Power ¹ under normal and extreme op Average Power (dBm) ¹ For Operating Condition							10113	Max				
	Channel /	Normal	age rower (reme		Max	Duty	Average	Maximur			
	Mode	20°C	-20			5°C	Antenna	Cycle ⁴	Power	permitte			
	Mode	9.6Vdc	8.2Vdc	9.6Vdc	8.2Vdc	9.6Vdc	Gain ³	Cycle	(EIRP) ⁵	EIRP (dB			
	2402.00	15.8	16.8	17.0	12.9	12.9	2.0	1.0	19.0	20.0			
	2402.00	16.4	17.0	17.0	13.2	13.2	2.0	1.0	19.1	20.0			
	2476.00	16.0	16.8	16.9	12.9	12.9	2.0	1.0	18.9	20.0			
	2470.00	10.0	10.0	10.5	12.5	12.5	2.0	1.0	10.5	20.0			
		Pe	eak Power ²	under norr	nal and ext	reme operat	ing conditio	ns					
		Pea	ak Power (dl	3m) ² For Op	erating Con	dition	Max		Max				
	Channel /	Normal			reme		Max	Duty	Average	Maximur			
	Mode	20°C	-20	0°C		5°C	Antenna	Cycle ⁴	Power	permitte			
		9.6Vdc	8.2Vdc	9.6Vdc	8.2Vdc	9.6Vdc	Gain ³	-)	(EIRP) ⁵	EIRP (dB			
	2402.00	16.0	16.9	17.0	13.1	13.1	2.0	1.0	19.0	23.0			
	2441.00	16.3	17.1	17.1	13.3	13.3	2.0	1.0	19.1	23.0			
	2476.00	16.1	16.9	16.9	13.3	13.3	2.0	1.0	18.9	23.0			
Note 1:	Output power average powe		using Avera	ge Sensor.	Maximum p	ermitted bas	ed on inform	ation provid	ed by Horizo	n Hobby for			
		51 plus sub.											
Note 2:	Output power sesnor was u		-										
						h		u.:					
Note 3:	Gain is the m												
			е ог те па	ismiller dun	ng the powe	ermeasurem	ent jume on i	(ume on +	time on)]. Mo	easureu			
					using the spectrum analyzer to verify continuous transmission (duty cycle = 1.0).								
Note 4: Note 5:		ctrum analy	zer to verify	continuous		n (duty cycle	= 1.0).	UT antenno	agin				

	A division of ZAZZAS		
Client:	Horizon Hobby, Inc.	Job Number:	J61984
Madal	X1TXN Spektrum DSM X1 module	T-Log Number:	T61985
WOUEI.		Account Manager:	Ezther Zhu
Contact:	Paul Beard		
Spec:	EN 300 440 V1.3.1, EN 300-328 V1.7	Class:	N/A

Run #3: Bandwidth, Channel Occupancy, Spacing and Number of Channels

С	Channel	Frequency (MHz)	Resolution Bandwidth		Resolution Bandwidth	MAM Randwidth (KHZ)
	Low	2402	100	1250	100	1200
	Mid	2442	100	1270	100	1200
	High	2478	100	1300	100	1200

Note 1:	20dB bandwidth measured using RB = 100, VB = 300 (VB > RB)
Note 2:	99% bandwidth measured using RB = 100, VB = 300 (VB >=3RB)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. (Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.)

The channel dwell time is calculated from the transmit time on a channel mulitplied by the number of times a channel could be used in a period of 0.4 times the number of channels, N (i.e. 0.4N divided by the time between successive hops, rounded up to the closest integer), unless the time between successive hops exceeds 0.4N, in which case the channel dwell time is the transmit time on a channel.

Maximum 20dB bandwidth:	1270	kHz	Pass
Channel spacing:	2000	kHz	Pass
Transmission time per hop:	0.43	ms	
The time between successive hops on a channel:	22	ms	
Number of channels (N):	40		Pass
Channel dwell time in 16.0 seconds:	0.43	ms	Pass

E		ott				EM	C Test Data
Client:	Horizon H			Jo	ob Number:	J61984	
Madalı		aaktrum DCM X1 madula		T-Lo	og Number:	T61985	
woder.		pektrum DSM X1 module		Accour	nt Manager:	Ezther Zhu	
	Paul Bear						
Spec:	EN 300 44	40 V1.3.1, EN 300-328 V1.7			Class:	N/A	
		Radiated Spuriou	us Emissions, EN 3	800 440 V ²	1.3.1		
Test Speci	ifics Objective:	The objective of this test session specification listed above.	is to perform final qualif	ication testin	ig of the EU	T with respec	t to the
Test	Engineer:	1/26/2006 Chris Byleckie SVOATS #2	Config. Used: Config Change: EUT Voltage:	AC Adapter		·	
General Te The EUT w		uration on the turntable for radiated spur	rious emissions testing.				
The measu	irement an	tenna was located 3 meters from	the EUT.				
Ambient C	onditions	: Temperature: Rel. Humidity:	13 °C 49 %				
Summary	of Results						
Rur	า #	Test Performed	Limit	Pass / Fail	Result	/ Margin	
1		RE, Fundamental Level Transmit Mode	EN 300 440	Pass		BuV/m @ (+19.7dBm)	
2		RE, 25 - 25000 MHz - Spurious Emissions Transmit Mode	EN 300 440	Pass		8µV/m @ Iz (-20.0dB)	
		During Testing: e made to the EUT during testing					
Deviations No deviatio		e Standard ade from the requirements of the	standard.				

E	liott
	A division of ATAS

	A division of ATAS		
Client:	Horizon Hobby, Inc.	Job Number:	J61984
Madal	X1TXN Spektrum DSM X1 module	T-Log Number:	T61985
wouer.		Account Manager:	Ezther Zhu
Contact:	Paul Beard		
Spec:	EN 300 440 V1.3.1, EN 300-328 V1.7	Class:	N/A

Run #1: Radiated Spurious Emissions, Transmit Mode, Fundamental

Fraguanay		Dal	EN 200	AAO Note 1	Detector	Azimuth	Hoight	Commonto		
Frequency		Pol	EN 300		Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2402.000		V	115.3	0.8	Pk	183		EUT uprigh		
2442.000		V	115.3	2.2	Pk	178		EUT uprigh		
2480.000		V	115.3	1.6	Pk	23		EUT uprigh		
2402.000		h	115.3	-15.3	Pk	54	1.0	EUT uprigh	t	
2442.000		h	115.3	-12.6	Pk	226		EUT uprigh		
2480.000		h	115.3	-14.7	Pk	315		EUT uprigh	t	
2402.000		V	115.3	-8.5	Pk	349		EUT flat		
2442.000		V	115.3	-8.8	Pk	334		EUT flat		
2480.000		V	115.3	-9.1	Pk	328		EUT flat		
2402.000		h	115.3	2.0	Pk	114		EUT flat		
2442.000		h	115.3	2.0	Pk	132		EUT flat		
2480.000	115.5	h	115.3	0.2	Pk	343	1.2	EUT flat		
	ground pla		nargin relati	ive to this fi	ald strength	limit is determ	nined using i	substitution	measurement	s
Note 2: Horizontal Frequency MHz	EUT sidev	10dB of r vays was ion meas Gain ²	surements FS ³	as the anter Site Factor ⁴	nna would b EU FS⁵	e in the same T measureme eirp (dBm)	orientation ents erp (dBm)	as with the eirp Limit dBm		Margin dB
Note 2: Horizontal Frequency MHz 2480.000	EUT sidev Substitut Pin ¹ 8.2	10dB of r vays was ion meas Gain ² 9.3	surements FS ³ 115.3	as the anter Site Factor ⁴ 97.8	nna would b EU FS ⁵ 115.3	e in the same T measureme eirp (dBm) 17.5	orientation ents erp (dBm) 15.3	eirp Limit dBm 20.0	EUT flat erp Limit	Margin dB -2.5
Note 2: Horizontal Frequency MHz 2480.000 2442.000	EUT sidev Substitut Pin ¹ 8.2 8.4	ion meas Gain ² 9.3 9.3	surements FS ³ 115.3 117.3	as the anter Site Factor ⁴ 97.8 99.6	nna would b EU FS ⁵ 115.3 117.3	e in the same T measureme eirp (dBm) 17.5 17.7	orientation ents erp (dBm) 15.3 15.5	eirp Limit dBm 20.0 20.0	EUT flat erp Limit	Margin dB -2.5 -2.3
Note 2: Horizontal Frequency MHz 2480.000 2442.000 2402.000	EUT sidev Substitut Pin ¹ 8.2 8.4	10dB of r vays was ion meas Gain ² 9.3	surements FS ³ 115.3	as the anter Site Factor ⁴ 97.8	nna would b EU FS ⁵ 115.3	e in the same T measureme eirp (dBm) 17.5	orientation ents erp (dBm) 15.3	eirp Limit dBm 20.0	EUT flat erp Limit	Margin dB -2.5
Note 2: Horizontal Frequency MHz 2480.000 2442.000 2402.000 Vertical	Iess than EUT sidev Substitut Pin ¹ 8.2 8.4 8.4	ion meas Gain ² 9.3 9.3 9.3	surements FS ³ 115.3 117.3 117.3	site Site Factor ⁴ 97.8 99.6 99.6	EU FS ⁵ 115.3 117.3 117.3	e in the same T measureme eirp (dBm) 17.5 17.7 17.7	ents erp (dBm) 15.3 15.5 15.5	eirp Limit dBm 20.0 20.0 20.0	EUT flat erp Limit dBm	Margin dB -2.5 -2.3 -2.3
Note 2: Horizontal Frequency MHz 2480.000 2442.000 2442.000 2402.000 Vertical Frequency	Iess than EUT sidev Substitut Pin ¹ 8.2 8.4 8.4 Substitut	ion meas Gain ² 9.3 9.3 9.3 ion meas	surements FS ³ 115.3 117.3 117.3 surements	Site Factor ⁴ 97.8 99.6 99.6 Site	nna would b EU FS ⁵ 115.3 117.3 117.3 EU	e in the same T measureme eirp (dBm) 17.5 17.7 17.7 T measureme	orientation ents erp (dBm) 15.3 15.5 15.5 ents	eirp Limit dBm 20.0 20.0 20.0 eirp Limit	EUT flat erp Limit dBm erp Limit	Margin dB -2.5 -2.3 -2.3 Margin
Note 2: Horizontal Frequency MHz 2480.000 2442.000 2402.000 2402.000 Vertical Frequency MHz	EUT sidev EUT sidev Substitut Pin ¹ 8.2 8.4 8.4 Substitut Pin ¹	10dB of r vays was ion meas Gain ² 9.3 9.3 9.3 ion meas Gain ²	surements FS ³ 115.3 117.3 117.3 surements FS ³	Site Factor ⁴ 97.8 99.6 99.6 Site Factor ⁴	EU FS ⁵ 115.3 117.3 117.3 EU FS ⁵	e in the same T measureme eirp (dBm) 17.5 17.7 17.7 T measureme eirp (dBm)	orientation ents erp (dBm) 15.3 15.5 15.5 ents erp (dBm)	eirp Limit dBm 20.0 20.0 20.0 eirp Limit dBm	EUT flat erp Limit dBm	Margin dB -2.5 -2.3 -2.3 Margin dB
Note 2: Horizontal Frequency MHz 2480.000 2442.000 2402.000 Vertical Frequency MHz 2408.000	Iess than EUT sidev Substitut Pin ¹ 8.2 8.4 8.4 Substitut Pin ¹ 10.4	ion meas Gain ² 9.3 9.3 9.3 ion meas Gain ² 9.3	surements FS ³ 115.3 117.3 117.3 surements FS ³ 116.9	Site Factor ⁴ 97.8 99.6 99.6 99.6 Site Factor ⁴ 97.2	EU FS ⁵ 115.3 117.3 117.3 EU FS ⁵ 116.9	e in the same T measureme eirp (dBm) 17.5 17.7 17.7 T measureme eirp (dBm) 19.7	ents erp (dBm) 15.3 15.5 15.5 erps erp (dBm) 17.5	eirp Limit dBm 20.0 20.0 20.0 eirp Limit dBm 20.0	EUT flat erp Limit dBm erp Limit	Margin dB -2.5 -2.3 -2.3 Margin dB -0.3
Note 2: Horizontal Frequency MHz 2480.000 2442.000 2402.000 Vertical Frequency MHz 2408.000 2442.000	Substitut Pin ¹ 8.2 8.4 Substitut Pin ¹ 10.4 10.4	ion meas Gain ² 9.3 9.3 9.3 ion meas Gain ² 9.3 9.3	surements FS ³ 115.3 117.3 117.3 surements FS ³ 116.9 117.5	as the anter Site Factor ⁴ 97.8 99.6 99.6 Site Factor ⁴ 97.2 97.8	EU FS ⁵ 115.3 117.3 117.3 EU FS ⁵ 116.9 117.5	e in the same T measureme eirp (dBm) 17.5 17.7 17.7 T measureme eirp (dBm) 19.7 19.7	orientation ents erp (dBm) 15.3 15.5 15.5 ents erp (dBm) 17.5 17.5	eirp Limit dBm 20.0 20.0 20.0 eirp Limit dBm 20.0 20.0	EUT flat erp Limit dBm erp Limit	Margin dB -2.5 -2.3 -2.3 Margin dB -0.3 -0.3
Note 2: Horizontal Frequency MHz 2480.000 2442.000 2402.000 Vertical Frequency MHz 2408.000	Substitut Pin ¹ 8.2 8.4 Substitut Pin ¹ 10.4 10.4	ion meas Gain ² 9.3 9.3 9.3 ion meas Gain ² 9.3	surements FS ³ 115.3 117.3 117.3 surements FS ³ 116.9	Site Factor ⁴ 97.8 99.6 99.6 99.6 Site Factor ⁴ 97.2	EU FS ⁵ 115.3 117.3 117.3 EU FS ⁵ 116.9	e in the same T measureme eirp (dBm) 17.5 17.7 17.7 T measureme eirp (dBm) 19.7	ents erp (dBm) 15.3 15.5 15.5 erps erp (dBm) 17.5	eirp Limit dBm 20.0 20.0 20.0 eirp Limit dBm 20.0	EUT flat erp Limit dBm erp Limit	Margin dB -2.5 -2.3 -2.3 Margin dB -0.3
Note 2: Horizontal Frequency MHz 2480.000 2442.000 2402.000 Vertical Frequency MHz 2408.000 2442.000 2442.000	Substitut Pin ¹ 8.2 8.4 8.4 Substitut Pin ¹ 10.4 10.4	10dB of r vays was ion meas <u>Gain²</u> 9.3 9.3 ion meas <u>Gain²</u> 9.3 9.3 9.3	surements FS ³ 115.3 117.3 117.3 surements FS ³ 116.9 117.5 116.9	Site Factor ⁴ 97.8 99.6 99.6 Site Factor ⁴ 97.2 97.8 97.2 97.2 97.2	EU FS ⁵ 115.3 117.3 117.3 EU FS ⁵ 116.9 117.5 116.1	e in the same T measureme eirp (dBm) 17.5 17.7 17.7 17.7 T measureme eirp (dBm) 19.7 19.7 18.9	orientation ents erp (dBm) 15.3 15.5 15.5 ents erp (dBm) 17.5 17.5	eirp Limit dBm 20.0 20.0 20.0 eirp Limit dBm 20.0 20.0	EUT flat erp Limit dBm erp Limit	Margin dB -2.5 -2.3 -2.3 Margin dB -0.3 -0.3
Note 2: Horizontal Frequency MHz 2480.000 2442.000 2402.000 Vertical Frequency MHz 2408.000 2442.000 2442.000 2402.000	Iess than EUT sidev Substitut Pin ¹ 8.2 8.4 Substitut Pin ¹ 10.4 10.4 10.4 Pin is the	10dB of r vays was ion meas Gain ² 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3	surements FS ³ 115.3 117.3 117.3 surements FS ³ 116.9 117.5 116.9 ver (dBm) to	Site Factor ⁴ 97.8 99.6 99.6 99.6 Site Factor ⁴ 97.2 97.8 97.2 97.2	EU FS ⁵ 115.3 117.3 117.3 EU FS ⁵ 116.9 117.5 116.1 ution antenr	e in the same T measureme eirp (dBm) 17.5 17.7 17.7 T measureme eirp (dBm) 19.7 19.7 19.7 18.9	orientation ents erp (dBm) 15.3 15.5 15.5 ents erp (dBm) 17.5 17.5 16.7	eirp Limit dBm 20.0 20.0 20.0 eirp Limit dBm 20.0 20.0 20.0	EUT flat erp Limit dBm erp Limit	Margin dB -2.5 -2.3 -2.3 Margin dB -0.3 -0.3
Note 2: Horizontal Frequency MHz 2480.000 2442.000 2402.000 Vertical Frequency MHz 2408.000 2442.000 2442.000 2402.000 Note 1: Note 2:	Iess than EUT sidev Substitut Pin ¹ 8.2 8.4 Substitut Pin ¹ 10.4 10.4 Pin is the Gain is the	10dB of r vays was ion meas Gain ² 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3	surements FS ³ 115.3 117.3 117.3 117.3 surements FS ³ 116.9 117.5 116.9 ver (dBm) to Bi) for the su	Site Factor ⁴ 97.8 99.6 99.6 99.6 99.6 Site Factor ⁴ 97.2 97.8 97.2 0 the substit ubstitution a	EU FS ⁵ 115.3 117.3 117.3 117.3 EU FS ⁵ 116.9 117.5 116.1 ution antenn intenna. A di	e in the same T measureme eirp (dBm) 17.5 17.7 17.7 T measureme eirp (dBm) 19.7 19.7 19.7 19.7 18.9 ma pole has a ga	ents erp (dBm) 15.3 15.5 15.5 erp (dBm) 17.5 17.5 16.7 ain of 2.2dB	eirp Limit dBm 20.0 20.0 20.0 eirp Limit dBm 20.0 20.0 20.0	EUT flat erp Limit dBm erp Limit	Margin dB -2.5 -2.3 -2.3 Margin dB -0.3 -0.3
Note 2: Horizontal Frequency MHz 2480.000 2442.000 2402.000 Vertical Frequency MHz 2408.000 2442.000 2408.000 2402.000 Vertical Frequency MHz 2408.000 2442.000 2402.000 Note 1: Note 1: Note 2: Note 3:	Substitut Pin ¹ 8.2 8.4 8.4 Substitut Pin ¹ 10.4 10.4 10.4 10.4 Pin is the Gain is the FS is the f	10dB of r vays was ion meas Gain ² 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3	surements FS ³ 115.3 117.3 117.3 117.3 surements FS ³ 116.9 117.5 116.9 117.5 116.9 wer (dBm) to Bi) for the sungth (dBuV/n	Site Factor ⁴ 97.8 99.6 99.6 99.6 99.6 Site Factor ⁴ 97.2 97.8 97.2 0 the substit ubstitution a m) measure	EU FS ⁵ 115.3 117.3 117.3 117.3 EU FS ⁵ 116.9 117.5 116.1 ution antenr intenna. A di	e in the same T measureme eirp (dBm) 17.5 17.7 17.7 T measureme eirp (dBm) 19.7 19.7 19.7 19.7 18.9 na pole has a ga ubstitution an	ents erp (dBm) 15.3 15.5 15.5 15.5 erts erp (dBm) 17.5 17.5 16.7 ain of 2.2dBi itenna.	eirp Limit dBm 20.0 20.0 20.0 20.0 eirp Limit dBm 20.0 20.0 20.0 20.0	EUT flat erp Limit dBm erp Limit dBm	Margin dB -2.5 -2.3 -2.3 Margin dB -0.3 -0.3
2480.000 2442.000 2402.000 Vertical Frequency MHz 2408.000 2442.000	Iess than EUT sidev Substitut Pin ¹ 8.2 8.4 Substitut Pin ¹ 10.4 10.4 10.4 Fin is the Gain is the Site Facto	ion meas Gain ² 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3	surements FS ³ 115.3 117.3 117.3 117.3 surements FS ³ 116.9 117.5 116.9 117.5 116.9 wer (dBm) to Bi) for the sungth (dBuV/n	Site Factor ⁴ 97.8 99.6 99.6 99.6 Site Factor ⁴ 97.2 97.8 97.2 97.8 97.2 0 the substit ubstitution a m) measure tor to conve	EU FS ⁵ 115.3 117.3 117.3 117.3 EU FS ⁵ 116.9 117.5 116.1 ution antenr ution antenr utenna. A di ed from the s	e in the same T measureme eirp (dBm) 17.5 17.7 17.7 T measureme eirp (dBm) 19.7 19.7 19.7 19.7 18.9 ma pole has a ga	ents erp (dBm) 15.3 15.5 15.5 15.5 erts erp (dBm) 17.5 17.5 16.7 ain of 2.2dBi itenna.	eirp Limit dBm 20.0 20.0 20.0 20.0 eirp Limit dBm 20.0 20.0 20.0 20.0	EUT flat erp Limit dBm erp Limit dBm	Margin dB -2.5 -2.3 -2.3 Margin dB -0.3 -0.3

E C			t						EMC Test Data	
Client:	Horizon H	obby, Ind	D.				L.	Job Number:	J61984	
Madali		oktrum		dulo		T-L	og Number:	T61985		
Model.	I: X1TXN Spektrum DSM X1 module							Account Manager: Ezther Zhu		
	Paul Bear									
Spec:	EN 300 44	40 V1.3.1	l, EN 300-3	28 V1.7				Class:	N/A	
Run #2a: I	Radiated S	Spurious	Emission	s, Transmit	: Mode, 25 - 2	25000 MHz.	EUT @ 24	02 MHz		
Frequency	Level	Pol	EN 300	440 Note 1	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
4803.550	39.2	V	65.3	-26.1	PK	155	1.0	EUT uprigh	t	
7205.040	42.7	V	65.3	-22.6	PK	171	1.0	EUT uprigh		
4803.660	39.2	H	65.3	-26.2	PK	162	2.0	EUT uprigh		
7207.445	42.7	H	65.3	-22.6	PK	182	1.0	EUT uprigh	it	
4803.575 7205.830	39.2 42.7	H	65.3 65.3	-26.2 -22.6	PK PK	123 168	1.0 1.0	EUT Flat EUT Flat		
4803.605	38.5	V	65.3	-26.8	PK	292	1.0	EUT Flat		
7205.925	42.3	V	65.3	-23.0	PK	175	1.0	EUT Flat		
	_				1 1	-				
Note 1: Run #2b: 1	less than	10dB of ı	margin relat	ive to this fi s, Transmit	eld strength l	,	nined using	substitution	eirp for all signals with measurements.	
Frequency	Level	Pol	EN 300	440 Note 1	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
4959.640	45.3	V	65.3	-20.0	PK	87	1.7			
7439.325	44.5	V	65.3	-20.8	PK	175	1.0			
4959.515	42.5	H	65.3	-22.9	PK	173	1.2			
7440.800	44.0	Н	65.3	-21.3	PK	38	1.0			
Note 1: Note 2:	free space ground pla less than	e propaga ane and, 10dB of i	ation equati for erp limit margin relat	on: E=√(30 s, the dipole ive to this fi	PG)/d. This li e gain (2.2dB eld strength l	imit is conser i) has not bee	vative - it de en included nined using	oes not cons . The erp or substitution	the standard using the sider the presence of the eirp for all signals with measurements. 02MHz	
	,									
						Field Streng below the lir		ostitution M	easurements	

Ellie	ott			EMC Tes	st Data
Client: Horizon H	obby, Inc.		J	ob Number: J61984	
Model: X1TXN Sr	pektrum DSM X1 module	T-Log Number: T61985			
			Accour	nt Manager: Ezther Zhu	
Contact: Paul Bear	d 40 V1.3.1, EN 300-328 V1.7			Class: N/A	
Spec. EN 000 +-	to V1.3.1, EIV 300-320 V1.7			01033. 14/7	
R	adiated Spurious	Emissions, E	N 300	440 V1.3.1	
Test Specifics					
	The objective of this test session specification listed above.	ı is to perform final qualifi	ication testir	ng of the EUT with response	ect to the
Date of Test:		Config. Used:			
Test Engineer: Test Location:	Mehran Birgani	Config Change: EUT Voltage:		adapter	
			Dallely		
General Test Cor	nfiguration				
The EUT was located	on the turntable for radiated spu	irious emissions testing.			
The measurement and	tenna was located 3 meters from	the EUT.			
Ambient Conditio	ons: Temperature:	17 °C			
	Rel. Humidity:				
Summary of Res	ults				
Run #	Test Performed	Limit	Pass / Fail	Result / Margin	٦
1	RE, 30 - 12750 MHz	EN 300 440	Pass	33.7dBµV/m @	
	Spurious Emissions Receive		1 400	798.828MHz (-12.3dB	
Modifications Ma	ade During Testing:				
	e made to the EUT during testing	1			
		I			
Deviations From	The Standard				
No deviations were m	ade from the requirements of the	e standard.			

	A division of ZALES		
Client:	Horizon Hobby, Inc.	Job Number:	J61984
Model:	X1TXN Spektrum DSM X1 module	T-Log Number:	T61985
		Account Manager:	Ezther Zhu
Contact:	Paul Beard		
Spec:	EN 300 440 V1.3.1, EN 300-328 V1.7	Class:	N/A

Run #1: Radiated Spurious Emissions, Receive Mode, 30 - 12750 MHz.

Frequency	Level	Pol	EN 30	0 440	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
798.828	33.7	Н	46.0	-12.3	QP	340	2.2	LO, EUT Standing Up
798.828	31.5	Н	46.0	-14.5	QP	14	2.1	LO, EUT Lay Down
798.828	29.4	V	46.0	-16.6	QP	350	1.0	LO, EUT Standing Up
798.828	26.4	V	46.0	-19.6	QP	310	1.0	LO, EUT Lay Down
1598.774	27.2	Н	54.0	-26.9	AVG	197	1.0	EUT Standing Up
1602.989	26.7	V	54.0	-27.3	AVG	361	1.0	EUT Standing Up
1596.244	26.2	Н	54.0	-27.8	AVG	338	1.0	EUT Lay Down
1602.989	38.7	V	74.0	-35.3	PK	361	1.0	EUT Standing Up
1598.774	38.4	Н	74.0	-35.6	PK	197	1.0	EUT Standing Up
1596.244	38.1	Н	74.0	-36.0	PK	338	1.0	EUT Lay Down

All harmonics of LO were measured and signal levels were more than 20dBuV/m under the limit. The measurement were performed in low, center and high channel in receive mode and there were no changes observed with change in channel.

Run #2: Radiated Spurious Emissions, Receive Mode: Final Field Strength and Substitution Measurements No substitutions performed as all emissions were better than 10dB below the limit

APPENDIX C: Radiated Emissions Photographs

APPENDIX C: Radiated Emissions Photographs

APPENDIX D: Conducted Emissions Photographs